
EBI is an Outstation of the European Molecular Biology Laboratory.

The eHive system for pipeline
management and execution

Part 1: System overview

Instructors:
Leo Gordon and Brandon Walts

http://training.ensembl.org/events/2017/2017-03-23-ehiveRoslin

Course overview

Day 1

Introduction to eHive

Initializing and running eHive pipelines

Pipeline configuration: modifying existing
pipelines, and writing your own pipelines
(part 1)

Day 2
Pipeline configuration (part 2)

Writing your own runnable modules

Audience background
How many of you have experience:
• Running a pipeline or workflow

• “By hand”
• With a shell script
• With a pipeline management tool

(Galaxy, Taverna, CWL, JobTree...)
• Submitting jobs to a compute cluster

(using LSF, SGE)
• Using job control features of the scheduler

(job arrays, wait-for rules)
• Writing SQL queries
• Coding in Perl

eHive: an overview and brief history
At Ensembl, we run lots of workflows.
These pipelines have been getting more complex and

running longer as the amount of data expands
We also have workflows that may not be complicated, but

need to run in an automated way
In 2004, eHive was created to provide a standard, robust

way to create and run analysis pipelines

Design goals:

• Scalable

• Adaptable

• Reproducible

• Traceable

eHive provides:

A framework to define
workflows

● Sequencing operations
● Defining dependencies
● Flowing data
● Assigning resources

A system for
executing workflows

● Job management
● Logging
● Checkpointing

Compute farms

HeadJob

Queue

High mem GPU
RH6

● User at the head node submits
job into a queue

● Scheduler assigns job onto a
compute node based on

○ User priority
○ Resource requirements
○ Load

● More accurate load estimate =
better chance to be scheduled

● Overhead for scheduling a job
● Some basic ability to handle

relationships between jobs
○ Arrays
○ Wait-for

eHive's place in the farm

HeadJob

Queue

High mem GPU
RH6

● eHive does not replace the
scheduler (LSF, SGE, SLURM,
etc.).

● It works one layer above the
scheduler

● It is an automated, intelligent
job submission engine

● It is an automated, intelligent
job execution engine

eHive fundamentals
eHive's model of distributed computation
• Independent agents perform computation
• Coordination via a central list of jobs
• Agents are responsible for claiming jobs, performing

work, and updating the central list

eHive fundamentals: walkthrough
Let’s start with an analogy, building a house

image: David Wright, cc license

eHive fundamentals: walkthrough
What do we need to get our task done:

Blueprints: an overall plan. This
plan is fixed and changes rarely
if at all over the course of the
project.

Job list: the current state of
what has been done and what
needs to be done next. This is
being updated continuously as
the project progresses.

Supervisor Workers Resources
Procedures:
exactly how
to perform a
job

eHive fundamentals: walkthrough
The difference between the blueprints, the job list, and procedures

Blueprints are:
● Fixed throughout the whole project

(in general)
● Describe “classes” of jobs
● Describe dependencies between job

classes
● Describe resources required for jobs

Job lists are:
● Dynamic, jobs are being added

throughout the project
● Describe “instances” of jobs
● Describe dependencies between

individual jobs

eHive fundamentals: walkthrough
The difference between the blueprints, the job list, and procedures

Procedures are:
● Fixed throughout the project
● Describe step by step how to do a

particular job
● Are parameterized, so they can be

customized by plugging in different
parameters

eHive fundamentals: walkthrough
Build Foundation

Build Wall

Install WindowAdd Roof Install Plumbing

Paint

Foundation

Wall Wall Wall Wall

Window

eHive fundamentals: walkthrough
Build Foundation

Build Wall

Install WindowAdd Roof Install Plumbing

Paint

Build Foundation

Build Wall

Install Window

Add Roof

Paint

Another way to
describe
dependencies:
"wait for these
tasks to be done"

Install
Plumbing

eHive fundamentals: walkthrough
In eHive, the supervisor is very “hands off” and the workers

take care of managing the jobs themselves.
Let’s follow a worker to see how this happens...

eHive fundamentals: walkthrough
follow a worker...

1. Worker checks the job list and
finds a job it can do

2. Worker claims a job, and
specializes to perform it

eHive fundamentals: walkthrough

follow a worker...

3. Worker finishes job and marks
it done on the job list

4. Worker checks the blueprints
to see if it needs to add any
new jobs to the list

eHive fundamentals: walkthrough

follow a worker...

5. Worker checks to see if there
are any more jobs of the same
type to do

6. If so, worker claims another
job and starts to work on it

7. If not, worker
checks to see if
there are other
types of jobs it
can do

eHive fundamentals: walkthrough

follow a worker...

8. If so, worker claims the new
job and respecializes to
perform it

9. If not, worker leaves

eHive fundamentals: walkthrough

Worker time limit Workers have a time limit:
● Default 1 hour
● After reaching limit, workers exit
● However, a worker will never abandon a

job in progress

Overtime makes the boss grumpy

eHive fundamentals: walkthrough
Build Foundation

Build Wall

Install Window

Add Roof

Paint

Install
Plumbing

Foundation

WallWallWallWall

Roof

Window

eHive fundamentals: walkthrough
The role of the supervisor

The supervisor looks at the current
job list, blueprints, and staff, and
hires more workers if needed.

+

+
+

eHive fundamentals: walkthrough
A bit about specialization ● A worker knows about its

capabilities.
● When looking for a job to

claim, it checks the
requirements for that class of
job.

● If the worker's capabilities
meet the job's requirements,
it claims that job.

● A worker doesn’t know “I can
install lightbulbs.” It knows “I
can reach high” and it sees
“install lightbulbs jobs have a
“can reach high”
requirement, so it knows it
can specialize

eHive fundamentals: walkthrough
There has to be at least one job to get started

So there’s a special mechanism to create at least one job when starting the project - usually this is
the first class of job, but it can start anywhere

eHive fundamentals: components
How this model is actually implemented in eHive

eHive fundamentals: components

Hive database

Blueprints

Job list

Can be run in any of:

eHive fundamentals: components

Hive database

Blueprints

Job list

use base
(‘Bio::EnsEMBL::Hive::Process’)

{
}

=

Procedures

eHive fundamentals: components

Hive database

Blueprints

Job list

use base
(‘Bio::EnsEMBL::Hive::Process’)

{
}

=

Procedures

Running process on a local
machine or a farm node

Worker

eHive fundamentals: components

Hive database

Blueprints

Job list

use base
(‘Bio::EnsEMBL::Hive::Process’)

{
}

=

Procedures

Running process on a local
machine or a farm node

Supervisor

=

=
Running process on a local
machine

Worker

eHive fundamentals: hive database

Hive database

Blueprints

Job list

Other housekeeping
and logs

use base
(‘Bio::EnsEMBL::Hive::PipeConfig::
HiveGeneric_conf’)

{
}

PipeConfig

init_pipeline.pl

eHive fundamentals: running

CC image by F. Hirzinger

ProceduresSupervisor

Workers

Compute resources

eHive fundamentals: terminology

CC image by F. Hirzinger

PipeConfig

Blueprints stored
in a file

Beekeeper Worker

Supervisor Worker Procedure

Runnable

Compute resources

Meadow (~ a farm head node) and Valley (group of
meadows)

Hive database

Hive database (details covered later in
the course)

Ensembl Acknowledgements
The Entire Ensembl Team

Funding

Co-funded by the
European Union

